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The rectified flow, induced by divergence of the vorticity flux in lateral oscillatory 
viscous boundary layers along the sidewalls of a semi-enclosed basin, is studied as 
a function of the Strouhal number, K ,  equivalent to the Reynolds number of the 
viscous inner oscillatory boundary layer, and of the Stokes number. The squared ratio 
of these numbers defines another Reynolds number, measuring the strength of the 
self-advection by the residual flow. For strong self-advection the residual current 
decays to zero in an outer boundary, its width being large compared to the width 
of the inner layer. The regimes of small, moderate and strong self-advection are 
analysed. 

1. Introduction 
In many shallow seas, where the tidal current amplitude is larger than about 

0.5 ms-l, i t  is known that if the local velocity field is averaged over one or more tidal 
cycles the result is unequal to zero. Many mechanisms may generate such a constant 
flow (Huthnance 1981 ; Zimmerman 1981). Here we will study the effect of lateral 
frictional boundary layers. As shown by Yasuda (1980), in a semi-enclosed tidal basin 
they induce a rectified mean circulation with an intense outward flow along the 
boundary and a weak inward flow in the central region. The mechanism, essentially, 
can be understood as a divergence of the tidal averaged flux of vorticity, produced 
by viscous friction along the sidewalls, ultimately balanced by viscous vorticity 
diffusion (Zimmerman 1981). The crucial parameter, on which the strength of the 
retification depends, is the Reynolds number based on the ratio of longitudinal 
vorticity advection and lateral vorticity diffusion. 

Let U be a velocity scale, L the length of the semi-enclosed basin, v the horizontal 
(turbulent) vorticity and u the basic frequency of the tidal flow. Then the lateral 
boundary-layer thickness due to oscillatory flow along the sidewalls is 

s = ( V / U ) l .  (1.1) 

Hence we can define a Reynolds number as 

u2/L us2 u R e = - -  - --- 
vu/s2 VL u L -  K .  

Thus for the dynamics concerned, the Reynolds number is equivalent to the ratio 
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of the tidal excursion U l u  and the basin length L,  being the Strouhal number K 

(Zimmerman 198 1 ). 
Yasuda (1980) studied the rectified flow for small K .  He considered the case of a small 

Stokes number E = SIB ( B  being the half-width of the basin), when the oscillatory 
flow exhibits a boundary-layer character with the vorticity being constrained to  a 
small area near the sidewalls. Yet the rectified current extended over the whole basin 
width, having a finite velocity a t  the mid-axis of the basin which is independent of 
the Stokes number. 

However, from a more detailed analysis it appears that  this behaviour is only to 
be expected as long as the divergence of the overall vorticity flux (measured by a 
Strouhal number K g 1) is small or of comparable order with respect to vorticity 
diffusion (measured by E2) .  This is clearly demonstrated by Riley (1967) for the 
general case of oscillatory viscous flow. He also points out that other situations are 
more complicated and must be studied with different techniques. 

I n  the case where diffusion is small, even compared to  advection, the theory of 
double boundary layers can be used, see Riley (1965, 1967), Stuart (1963, 1966) and 
Grotberg (1984). Originally the theory was particularly developed for the archetypal 
example of an  oscillating cylinder in a viscous fluid (Schlichting 1932). One of its main 
points is that  the rectified flow also exhibits a boundary-layer character, its width 
being much larger than the width of the Stokes layer. Inside this ‘outer layer’ the 
rectified current can decay to zero. Physically, the existence of the outer layer is 
related to  self-advection of residual vorticity by the residual current, a process that 
has been neglected in Yasuda’s (1980) approach. The strength of self-advection, 
relative to viscous dissipation, is measured by a Reynolds number based on the 
residual velocity scale, of order KU, the basin lengthscale L and the viscosity, i.e. 

The regime studied by Yasuda (1980) applies to R,  4 1 in which self-advection by 
the residual flow can be neglected. Here, we extend his analysis to the regime 
R,  2 O(1).  

We start from the shallow-water equations for a homogeneous fluid with corre- 
sponding boundary conditions, properly scaled in $2. In  passing we note that after 
scaling i t  appears that  Yasuda’s (1980) solution is incomplete in the sense that an 
additional rectification mechanism, of the same strength as the one discussed by him, 
cannot be neglected, namely lateral vorticity advection. We therefore recalculate the 
rectified current velocity field for the regime R,  -4 1 in $3. The case R,  2 0(1) is 
considered in $4. Finally in $5 a discussion of the results and some conclusions are 
presented. 

2. Scaling of the basic equations 
We consider a semi-enclosed basin having a uniform equilibrium depth, H ,  a length 

L and a width 2B = 2L. This is done to keep the subsequent analysis as simple as 
possible. Later on the results will be generalized to  BIL = O(1). 

The shallow-water equations of motion for a rotating homogeneous fluid are 

-+u-+v---fv = - g - + v  a[ [;: -+- 3 au au au 
at ax ay ax 
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[;; 3. av av aV 
-+u-+v-+fu = - 9 - + v  -+- 
at ax ay aY 

The continuity equation is given by 

ac a a 
- + - [ ( H  + c) U ]  + - [ ( H  + 6) V ]  = 0. 
at ax aY 

(2.3) 

Here u and v are the horizontal components of the velocity vector, assumed to be 
vertically uniform as we have left out vertical turbulent momentum transfer. From 
Yasuda (1980) it is clear that the inclusion of the latter process does not add anything 
of importance to the dynamics we are concerned with here, which is mainly the 
generation of the vertical vorticity component by sidewall friction, represented by 
the (turbulent) viscosity coefficient v in the right-hand side of (2.1)-(2.2). Furthermore 
f is the Coriolis parameter, g the acceleration due to gravity and 5 the height of the 
surface of the fluid above the reference level. 

In looking for the dimensionles form of (2.1)-(2.3) we scale x and y by L, t by a-' 
(a the tidal frequency), u and v with a velocity scale U (the velocity amplitude in 
the middle of the open boundary, say), whereas the continuity equation suggests 
scaling 5 with UH/aL.  We a priori assume that the ratio a/ f is of the order 1. Defining 
the following non-dimensional parameters ; 

U 
CTL 

K (Strouhal number) = - , 

U 
F (Froude number) = - 

' 

I 
2n: basin length aL 

viscous boundary layer width - S 
L 

=-- A =  (SH):  - FK- ' ,  wavelength 

-- E =  
halfbasin width 

the equations of motion and the continuity equation are 

All variables have to be understood as being dimensionless and scaled according to 
the scheme given above. We search for non-transient solutions, satisfying the 
boundary conditions 

(2.8) I u = sint at  x = 0, 

u=O a t x = l ,  y = O  a n d y = 2 ,  

v = O  a t x = O ,  x = 1 ,  y = O  a n d y = 2 .  

From here on we shall assume that 
E 4  1, (2.9) 
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giving rise to a singular perturbation problem as E multiplies the highest-order 
derivatives in (2.5)-(2.7). Furthermore we consider basins having a characteristic 
lengthscale which is much smaller than the tidal wavelength. From (2.4) it then 
follows that 

A +  1, 

and as a consequence rotation effects will not be of importance. 

(2.10) 

After substitution of the regular expansions 

(2.11) 

(2.12) 

i +,y,t)  = U,(z,y, t )+EU,(x,y, t )+. . . ,  

v(x, y, t )  = V,(x, y, t )  +EV1(z, y, t )  + . .., 
5(x, Y, t)  = z,(x,  Y, t) +EZ,(x, Y, t )  + . . . , 

i t  follows that the zeroth-order momentum equations can be linearized for any 
Strouhal number K ,  since 

K A ~  = hF 4 1, 

the estimate following from (2.10) and the assumption that the Froude number is 
small in order to prevent breaking tidal waves. 

Evidently the zeroth-order equations in the regular expansion read 

(2.13) 

Note that we write capitals for the regular expansions. The solution of (2.13), subject 
to the slip boundary conditions 

I U,  = sint a t  x = 0, 

1 U o = O  a t x =  1, 

V o = O  a t y = O  a n d y = 2 ,  

reads U, = ( l -x)  sint, V, = O , ]  

. I  - 1 +exp ( - K cost) z, = 
K 

(2.14) 

(2.15) 

This is the well-known expression for a standing shallow-water gravity wave, which 
is valid under the conditions (2.9) and (2.10). I n  the same way the first-order regular 
system can be solved. For the lateral velocity component we obtain 

v, = 0, (2.16) 
which will be used later on. 

As the solution (2.14) does not include the viscous sidewall layers, necessary to 
bring the tangential velocity components to  zero along the walls, we have to correct 
the velocity field near the sidewalls by introducing boundary layers. Let 

L 
Y’ = SY (2.17) 
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be a lateral stretched coordinate near the boundary y = 0, based on the already 
dimensionless coordinate y (scaled by L ) ,  and assume that we have to rescale the 
lateral velocity component by 6U/L ,  as suggested by mass balance in the viscous 
boundary layer. Then we have the expansions 

where capitals refer to the variables in the regular expansion and lower-case letters 
to the boundary-layer corrections. These series should be substituted in the rescaled 
equations of motion : 

au av’ a5 
-+K u-+v’, = - ( l + K g )  -+, 
at [ ax ay ”7 [ax a,]. J 

To zeroth order in E we find, after some manipulations and use of the zeroth-order 
regular equations (2.13), that 

(2.20) 

showing that to this approximation the corrective velocity field is free of divergence, 
hence [,(y’, t )  = 0. Thus a streamfunction $ may be introduced, such that 

(2.21) 

the prime showing that the dimensionless stream function II.’ is scaled by the tidal 
velocity amplitude and the Stokes boundary-layer width S. The dynamics will now 
be governed by a vorticity equation. 

First we note that the inviscid regular field (2.15) is free of rotation. Obviously 
vorticity arises only by the presence of frictional boundary layers. Its dimensionless 
form (scaled by U / 6 )  reads 

av/ au 
ax ay’ 

0 = p---. (2.22) 

From the rescaled momentum equations a vorticity equation can be derived. 
Substitution of the expansions (2.18) gives in zeroth order 

(2.23) 

using (2.16) and (2.20). Writing wo in terms of the stream function by means of (2.21) 
and (2.22) and substituting (2.15) for Uo, we finally obtain 

The Jacobian J’ has its usual meaning. It describes the advection of vorticity by the 
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boundary-layer flow and is the cause of the principal nonlinearity of the vorticity 
equation. In terms of the rescaled variables 

y = Ey', $ = E$', 
(2.24) reads 

(2.25) 

In order to have the problem of solving (2.26) fully posed we finally introduce the 
following five boundary conditions : 

1 $ = O  a t x = l ,  y = O ,  y = l ,  

I 9 = (1-x) sint a t  y = 0, 
a?.i (2.27) 

= O  a t y =  1.  9 
aY2 J 

The first and second are obvious choices. The fourth one is in fact the no-slip condition 
as the regular velocity U,  and the boundary-layer correction together must vanish 
at  the sidewall. The third and fifth condition naturally arise from the symmetry of 
the flow about the mid-basin axis at y = 1. Note that the solution to (2.26)-(2.27) 
is valid in the lower half of the basin. Once it is known the solution in the upper half 
of the basin can be obtained by reflection in y = 1. Equation (2.26) describes the 
generation of vorticity by the no-slip conditions (2.27) at the sidewalls. Since the 
latter are periodic in time, the resulting stream function will also have a periodic 
character, but, as can be seen in (2.26), all terms proportional to K may produce higher 
harmonics as well as a rectified time-independent component. Note that we do not 
require the longitudinal component of the residual velocity to vanish at y = 1 .  We 
expect that for sufficiently wide basins the dynamics of the flow itself leads to 
vanishing residual velocity at the mid-basin axis. 

Evidently solutions of (2.26)-(2.27) are controlled by the non-dimensional para- 
meters K and E ,  which are the Strouhal number and Stokes number, respectively. In 
view of the discussion in the introduction, it is their squared ratio, R,  = K ~ E - ~  that 
determines whether or not the induced rectified flow has boundary-layer character. 
For R, 4 1 it  has not and therefore it may show a finite value at  y = 1 for E-tO. 
On the other hand, for R,  >> 1 another boundary layer develops in which the residual 
velocity tends to zero far away from the lateral boundaries. We shall now analyse 
these two regimes separately. Throughout these analyses we assume K < 1. 

3. Residual circulation for small Strouhal numbers and weak self-advection 
In this case we have K < 1 and K < E.  From the results of Riley (1967) it then 

follows that an approximate solution of (2.26) can be written as 

$ = $ , + K $ l + . . . .  (3.1) 

where +, and depend explicitly on E. To zeroth order we have 

subject to the same boundary conditions for $, as for $ in (2.27). The solution is 
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straightforward as in fact (3.2) describes a non-dimensional diffusion of vorticity with 
periodic boundary conditions. We find 

$o(x, Y, t)  = (1 -4 $ O ( Y >  0, (3.3) 

(3.4) I $ - $oeit+$,*e-it, 
where 0 -  

- sinh [iiE-l( 1 - y)] + (1 - y) sinh (i&-l) 
'O = 2i(i4 cosh (i4E-l) - sinh (itl3-l)) ' 

with the asterisk denoting a complex conjugation. 
Rectification now arises to first order in K .  To this order the stream function obeys 

subject to the same boundary conditions (2.27) for $, except the fourth one which 
should be replaced by 

as ljl0 already satisfies the fourth boundary condition of (2.27). 
The time-independent, rectified, part of the solution of (3.5) can be obtained by 

applying a time-averaging operator to (3.5). Let this operator be denoted by a bar: 

Then (3.5) reads 

w - 

flx = (1-x) s in tda+J($o ,$) -s in t$ .  ax ay2 
aY4 

Substituting (3.3) and (3.4) into (3.8), performing the time averaging, integrating over 
y and using the boundary conditions, we find a rather complicated solution of (3.8), 
involving hyperbolic and trigonometric functions of y. The solution is presented in 
Appendix A. Formally (3.8) can be solved for any value of E. However, only the limit 
E+O is physically significant, see (2.9). The residual stream function 3 and the 
components U and V of the residual current are obtained by expanding the results 
of Appendix A in powers of a-l = 42E.  It then follows 

- 1 
4a 

$ = K(l-x){ -----a~[ae-u~+2[sin(oly)+cos(ay)] 

7 
8a - (1 - y) [sin (ay)-cos ( a y ) ] l + ~ ( l -  y)3-31- y)+-}+0(5), a (3.9) 

K(  1 - 2) { - e-aY[+ e-av + sin (ay) +a( 1 - y) cos (ay)] - a? u=--= 
aY 

+ !( 1 - Y ) ~  -Q> + 0 (!), (3.10) a 

(3.11) 

Here we have included some of the O(K/U)  terms in which contribute, after 
differentiation, to the O(K)  approximation of E. Furthermore, we have chosen the 
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U l 4  -4 
FIQURE 1.  Lateral profiles of -, the non-dimensional longitudinal residual current solution 

(3.10), and ---, the Yasuda solution; E-' = 15. Flow in the central region is positive. 

0 1 
FIGURE 2. Stream function pattern of the residual current solution (3.10). 

expansions such that 3 obeys all boundary conditions. Note that 5, apart from an 
exponential decay in the stretched coordinate y' = y / E ,  exhibits a parabolic profile 
in the unstretched coordinate y. That means that for E-tO (such that K ~ E - ~  remains 
small) the residual velocity at the mid-basin axis keeps a finite value: 

(3.12) u(y  = 1 )  = - $ K ( ~ - x ) + O ( K E ) .  

Obviously the intensity of the residual current is proportional to the Strouhal 
number as long as K and R, are small, and for that  matter the residual current velocity 
in dimensional form is proportional to the square of the undisturbed tidal velocity 
amplitude, a result already derived by Yasuda (1980). However there is a qualitative 
disagreement between our solution and Yasuda's, in that  an additional term is 
present in (3.10). This can be traced back to the basic equation used here, namely 
equation (2.24), and to  the one used by Yasuda (1980). It appears that  the latter 
author only takes the longitudinal advection of vorticity into account. However, as 
our scaling shows, lateral vorticity advection in the boundary layer is of the same 
order as the former term, and thus has to  be taken into account as well. 

I n  figure 1 the lateral profiles of both the solution (3.10) and the Yasuda solution 

- 
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are shown for E-’ = 15 (a characteristic value for tidal basins, as will be discussed 
in $ 5 ) .  They have the same qualitative behaviour, namely an outward flux near the 
sidewall, an inward flux just outside the boundary layer and again an outflux in the 
central region. The difference between them is entirely due to the lateral advection 
term. Including this contribution means that vorticity is advected laterally over 
the bay, obviously resulting in a weaker outflux in the boundary layer and stronger 
fluxes in the central region. In figure 2 a contourplot of the associated residual 
streamfunction is shown. Of course, in order for the profiles of figure 1 and figure 2 
to be meaningful, R, should be small ; i.e. for E-’ = 15, K < &. This assumption is, 
however, not realistic to tidal basins where K - 0.7, see $5.  Therefore in the next 
section we will study the residual current dynamics for R, of order 1 and larger. 

4. Effect of self-interaction on the residual circulation for small Strouhal 
numbers 

In the case of moderate to large values of R, there is an ‘outer region’, outside 
the Stokes layer near the wall, where self-advection due to the residual current and 
lateral diffusion of residual vorticity are of comparable importance. We then have 
to match the profile in the Stokes layer to the profile in the outer region in such a 
way that in summation these profiles obey the boundary conditions. 

Using now explicitly the boundary-layer character of the inner layer, its dynamics 
is given by (2.24). Expanding I,V in K and E-’ we have to zeroth order 

?& = 0 (x= i ) ,  

where the boundary conditions arise from the fact that an oscillatory outer solution 
at this order vanishes, as is obvious from (2.26), expanding in K and E-l. The solution 
of (4.1) reads: 

where the asterisk denotes a complex conjugation. 
To order K we have from (2.24) for the residual flow in the Stokes’ layer 

- a&- @; = 0,- - 0 (y’ = O ) ,  
subject to 

aY - 
3- /J 

%+constant finite value ( y ’ - + c ~ ) ,  \ 
aY‘ 

(4.3) 

(4.5) 

I - 
@; = o  (x= 1) .  
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The third condition is the crucial one as it is not possible to require that the velocity 
vanishes outside the Stokes layer. Instead the relaxed condition of a finite residual 
velocity outside that layer is posed, as was the original idea of Schlichting (1932). 
Its validity has been discussed by Riley (1965) and Stuart (1966). It is of course this 
unphysical behaviour at infinity that has to be corrected for by the outer solution 
later on. Subject to the given conditions the solution of (4.4) reads : 

1 (4.6) 

- +; = (1  - ~ ) { ~ ( y ’ ) e - 1 ~ ~ y ’ - i y ’ + ~ ~ / 2 } ,  

&y’) = -21/2{b-4d2Y’+ sin (+1/2y’) + 3 cos (+1/2y’)}. J 
Note that (4.6) agrees with the boundary-layer part (y-tO) of p’ = $/E,  where 3 is 
given in (3.9). The components of the residual velocity in the Stokes layer are given 

u = ~ ( 1  -~ ){ -e -~y[+-~y+s in (ay )++  cos(ay)]+i}+O(~/a),)  - by 

where 3; is given in (4.6) and a in (A 2). These results agree with the boundary-layer 
parts of U and V in (3.10) and (3.11). Thus, for y’+m the residual velocity is 
3(1 -x)/4. Being positive this means a net flow into the basin (flood surplus) at the 
top of the inner layer. 

The constant residual velocity outside the Stokes layer means a non-zero stream 
function at the mid-basin axis if we were to extend the solution into that region. This 
has to be corrected for by properly choosing the mid-axis boundary conditions for 
the outer regime. We shall see that this choice also implies the vanishing of the 
residual velocity a t  the axis for basins which have effectively an infinite width, 
provided we include self-advection of residual vorticity . 

In  Appendix B the derivation of the equation for the O ( K )  residual stream function 
x1 of the outer regime is given. It obeys 
- 

with the boundary conditions 

Here R, is given by (1.3) and x1 and y are non-dimensional variables scaled as $ and 
y in (2.25), i.e. with UB and B respectively. Furthermore 

(4.10) 

with q5 defined in (4.6). Evidently, the third boundary condition in (4.9) causes the 
total O(K)  solution 3, = Xl + E$i to vanish at the basin axis y = 1 .  

Obviously, if R, 4 1 in (4.8), self-advection can be neglected, whereas for R, % 1 
a new boundary layer must be expected since then R;’ is a small parameter 
multiplying the highest derivative in (4.8). We briefly consider the regime R, 4 1 
first. Then we have as a first approximation to xl : 

4- a==, 
aY4  

(4.11) 
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subject to the boundary conditions (4.9). The solution reads 

so that the total solution is given by 

where $(y’) is given by (4.6). With a given by (4.10) we recover (3.9). In particular 
we have, neglecting order E and smaller, U = - 3 ~ (  1 -x) /8  for y = 1 ,  implying a finite 
outward velocity at  the basin axis, see also (3.12). 

We now consider the regime R* = O( 1 )  and larger. In  this case we have to face the 
fully nonlinear equation (4.8). First we suppose that Xl has the now familiar form 

z1 = (1  -4 @(Y). (4.14) 

Substitution in (4.8) gives - 

subject to the boundary conditions 

(4.15) 

(4.16) 

where a is defined in (4.10). The third condition again assures a vanishing total 
stream function at  y = 1 .  No exact solution of (4.15) satisfying (4.16) is known, 
whereas a perturbation approach makes no sense due to the strong nonlinear 
interaction. For strong nonlinear interactions, however, sometines an iterative series 
may do, as has been proposed for an analogous problem by Fettis (1956). The method 
has been proven to be useful in the present context (Stuart, 1966; Grotberg 1984). 
It consists of expanding first @ in a power series of a formal expansion parameter, 

@ = @ o + € @ l + E 2 @ 2 + . . .  . (4.17) 

Now @o is a ‘first guess’ testfunction that satisfies (4.15) and all but one of the 
boundary conditions in (4.16). Evidently 

Go = constant = a (4.18) 

is an obvious choice satisfying all but the first conditions in (4.16). The first condition 
then reads: 

a+s@,(0)+e2@,(0)+ ... = 0. (4.19) 

Substituting (4.17) and (4.18) into (4.35), collecting terms of equal powers in E ,  gives 
an infinite series of linear differential equations for each of the iterates Gt ( i  2 1 )  : 

E :  

subject to (4.19) and to 
d@t d2Gt 

@&l) = - ( O )  = -(l)  = 0. 
dY dY2 

(4.20) 

(4.21) 

The iterative series (4.17) can be truncated after a finite number of terms. The 
truncated sum then approximates the solution of (4.15) subject to (4.16) after 
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restoring E = 1. The convergence of this procedure has been demonstrated by Watson 
(1965). Here we shall truncate a t  the lowest possible order, i.e. i = 1. The solution 
of 

d3@, = -yT (y = aR,), 
dY4 dY 

(4.22) 

subject to (4.21) and to the truncated form of (4.19), ol(O) = -01 ,  reads 

@,(y) = Ae-YY+By2+Cy+D, (4.23) 

where 

(4.24) 

C = yA, D = -a-A. I 
Thus the total O(K)  solution reads 

- 

@, = (1 -2) [Eq5(y')e-:"2Y'-b+i2/2E+ A{e-Yv-*2e-Yy2+ yy- l)], (4.25) 

with $(y') given by (4.6), y by (4.22) and A by (4.24). The components of the residual 
current read 

- 
u = K (  1 - x) { -e-""[f e-"u + sin (ay) + cos (ay)] 

+g+yA[e-Yu+ ye-Yy-l]}+O 

where 3, is given in (4.25). A t  the mid-axis y = 1 the longitudinal component of the 
residual current is 

u(1) = i K ( l - X ) { l +  (1 - Ea') y(e-7 + y e- " -~ )}+o(KE) ,  (4.27) 
(1 - *2) e-Y + y - 1 

where use has been made of (4.10) and (4.24). 
It is now interesting to  consider two limits of (4.27). For y+O(R, < 1) the 

contributions in (4.27) which are O(KYE) can be neglected since they are O(KE). Next 
expanding the nominator and denominator in powers of y we obtain 

(4.28) u(1) = -$K(~-x)+O(KY,KE),  

which is in agreement with (3.12). For y+00 (R, >> 1) the contributions in (4.27) 
which are O(KYE) must be included since they can be O ( K ) .  We then have 

- 

(4.29) 

It appears that the sign of the residual velocity will depend on the choices of y and 
E. For y small with respect to  E-' we will have an ebb surplus a t  the mid-axis. On 
the other hand, for y 3 E-' a flood surplus occurs, since a' z 72/2/6. However, the 
most important conclusion from (4.29) is that the residual current at the mid-axis 
is O( l /y )  for y +  00. This is due to the strong self-interaction mechanism, which forces 
the residual current to  tend to  zero in an outer boundary layer with a width O( R$). 
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6 

P 

U 
- 

FIGURE 3. Lateral profiles of the non-dimensional longitudinal residual current velocity according 
to (4.26) for K = 0.7 and for the values of E-' shown on top. Flow at the mid-axis of the basin is 
negative. 

5. Discussion and conclusions 
We have shown that in a semi-enclosed tidal basin a rectified flow may develop 

due to vorticity-advection in lateral viscous boundary layers of thickness (v/a)t. The 
residual flow extends outside this oscillatory viscous wall layer and exhibits a 
boundary-layer character itself when the Reynolds number, R,, becomes large. This 
double boundary-layer character is due to self-advection by the residual flow field. 
As R, = K~E- ,  this means that if we let the width of the basin increase relative to 
the Stokes-layer thickness (v /a) i ,  keeping K = constant 6 1, we will always encounter 
the regime R, 9 1.  Then the outer boundary layer establishes itself such that residual 
velocities in the centre of the basin become very weak. The results obtained in the 
$$3 and 4 are valid for tidal basins having a width/length ratio (2B/L) of 2. However 
they can easily be generalized to the case B/L = O(1). The only differences are that 
then y represents the dimensional y-coordinate scaled by B, the Stokes number 
becomes E = S/B and that the results for V in (3.11), (4.7), (4.26) and (A 8) should 
be multiplied by B/L. 

Of course, the regime that will prevail in reality depends on the parameters that 
are representative for a typical tidal basin. As for this we assume the following 
characteristic values to apply: tidal velocity amplitude U = 1 ms-', basin length 
L = 10 km, basin width B = 5 km, tidal frequency (M,)  a = 1.4 x s-l, whereas 
for the most uncertain parameter, the lateral turbulent viscosity coefficient v we 
assume a range 10-100 rn2sp1. Then K = 0.7, for which our analysis is marginally 
valid; S = (v /a) t  is between 270 and 850 m, hence E-' = B/S is between 6 and 19; 
finally R, varies between 18 and 180. These values show that the Stokes layers are 
always small compared to the basin width and, more important, that in reality R, 9 1 
is much more likely than the regime R, 6 1 which has been discussed before by 
Yasuda (1980). In figure 3 we show the lateral profile of the longitudinal component 
of the residual velocity according to (4.26) for a range of values of R,, for fixed 
K = 0.7;  i.e. we vary I3-l between 6 and 18. As can be seen the boundary layer 
character of the residual current increases with increasing R,. Notably the structure 
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FIGURE 4. Longitudinal residual velocity a(l) / ( l -x)  according to (4.27) as a function of 'Ologa, 
where a = ( v ' ~ E ) - ~ ,  and for the values of K shown on top. The flow in the central region of the 
basin can be negative as well as positive. 

of it is different from that in figure 1 where the double boundary-layer character has 
not been taken into account. In the latter case the circulation has two cells with water 
flowing into the basin (flood surplus) in the middle of the half width whereas there 
is ebb surplus near the sidewalls and at the mid-basin axis. In  the case of a large R,  
however, figure 3 shows that the structure is more simple having an ebb surplus in 
the boundary layer and a flood surplus being spread out over the cross-section, 
leading to weak residual currents in the centre of the basin and to strong currents 
near the wall. Actually, as Ti is scaled by KU (with U = 1 ms-l) the residual speed 
in the boundary layer can be quite substantial, several decimetres per second. 

I n  figure 4 the dependence of the longitudinal residual velocity a t  the mid-axis of 
the basin, given by (4.27), on the Stokes number is shown for different values of the 
Strouhal number. This is supplied in order to show that U(1) tends to zero for 
R, --f CQ. Furthermore, it  appears that  both an ebb surplus and flood surplus can 
occur, as has been discussed in $4. However, for realistic situations ( K  x 0.7) a flood 
surplus in the central region is more likely to be the case. 

This single-cell structure accords with qualitative vorticity arguments given by 
Yasuda (1980) and Zimmerman (1981). It is also the structure that arises when 
bottom friction dominates vorticity dissipation relative to lateral diffusion (Yasuda 
1980). However if the latter is not the case our results show that self-advection of 
the residual current is a necessary ingredient for the single-cell structure to occur. 

These investigations were supported (in part) by the Netherlands Foundation for 
the Technical Sciences (STW), future Technical Science Branch of the Netherlands 
Organization for the Advancement of Pure Research (ZWO). We are grateful to  a 
referee who, commenting on our earlier manuscript, suggested the treatment by 
means of double boundary layers. 

Appendix A. Residual current solution for K 4 1 ,  R, = K ~ E - ~  4 1 

Consider equation (3.8), being the O(K)  residual part of the vorticity equation 
(2.26) for R,  4 1.  The function ~o on the right-hand side is given in (3.3)-(3.4). The 
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solution gl, subject to the boundary conditions (2.27), except the fourth one which 
should be replaced by (3.6), can be obtained by integration. It reads 

- 
$ l ( X , Y )  = (1-x@1(6)7 

where f = a(1-y), a = (v‘2E)-l, 

and 
- 
$ , ( E )  = -L (:[sinh (2E)-sin (26)] 

Pa 

1 3 
a 

2(sinh a sin a + cosh a cos a )  + - cosh a sin a sinh 5 cos 

1 3 
a 

2(sinha sina-cosha cosa)-- sinha cosa cosht sin6 

E + - [ (sinh a cos a + cosh a sin a )  sinh 6 sin 5 

+ (sinh a cos a - cosh a sin a )  cosh cos 61 + C, E3 - C, 6. 

a 

I 
Furthermore, 

1 
a 

/? = 4 { cos2 a+ cosh2 a-- [sinh a cosh a+ sina cosa] 

1 
2a2 

1 
Pa4 

1 

+- [sin2 a + sinh2 a]}, 

C, = -{(h[cosh (2a)-cos(2a)]-~[sinh (2a)-sin (Za)]}, 

h[cosh (2a)-cos (2a)]-y[sinh (2a)-sin (2a)l). c2 = PapG 

The components (U, v )  of the residual current become 

which can easily be calculated from (A 3). 

Appendix B. Residual current dynamics for K < 1, R; = K ~ E - ~  = O(1) and 
larger 

layer methods. The solution is written as 
Consider the vorticity equation (2.26). If E 4 1 it can be analysed by boundary 

$ = x(x, y ,  t )  + JwI.’(x, YI.’, t ) .  (B 1 
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Here yf = y/E is a boundary-layer coordinate, x is an outer solution obeying (2.26) 
and $' an inner solution obeying (2.24). The boundary conditions are 

I x = o ,  $ ' = O  a t y = O , x =  1, 

I -=o ,  ax - = (1-x) sint a t  y = 0,  
a Y  3Y' 

1 
b 

x+-$' = 0 

I a t y =  1, 

a t y =  1, I 
which can be derived from (2.24)-(2.27) and (B 1). 

in power series of the small parameter K :  

In this case E2 = K ~ / R , ,  which clearly is small. This suggests expanding x and $' 

00 m 

First consider the zeroth-order system. The inner solution $; is already obtained in 
$4, see (4.3). From application of (B 2) it then follows xo = 0 for the outer solution. 

forces an O(K/1/R,) outer 
solution. In  O(K)  a residual current is generated which extends into the outer layer. 
Consequently the functions xn and $; (n 2 1) in (B 3) will consist of residual parts 
xn, rn and oscillating parts Xtn, $Lt. The residual current dynamics in lowest order 
follows from consideration of (2.26) for @ in O ( K ~ )  and (2.24) for $' in O(K).  Using 
xo = 0 we find 

From the last condition in (B 2) it can be seen that 

- 

I a 4 r .  _ .  

while 3; obeys (4.4). The solution of the latter equation, subject to the boundary 
conditions (B 2), is given in (4.6). 

In  (B 4) we must specify the parts x$ O of xt which oscillates with the basic tidal 
frequency, as well as the oscillating part xi of xl. This can be done by studying the 
O(K)  and O ( K ~ )  dynamics in the outer layer. From (4.26) for x and (4.3) we obtain 
in O(K)  

a a2x 
at ay2 
-1- - 0. 

Consequently xi is only driven by the zeroth-order inner solution $;, which according 
to (4.3) is proportional to sint. Consequently, from (B 5 ) ,  

a2xi - 
aY2 

xi - sint,-- - 0. 

The O ( K ~ )  dynamics of (4.26) for x reads 

As can be seen xk is driven by xl, but also by the O ( K )  inner-layer solution $it due 
to the last condition of (B 2). However, since we are only interested in x?j O, which 
oscillates with the basic tidal frequency, the forcing due to $it need not be considered 
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contributes as it oscillates with twice the tidal frequency. Then, from (B 7) ,  only 
to xi O and we conclude 

Substitution of (B 6) and (B 8) in (B 4) gives (4.8) with the boundary conditions (4.9). 

xi Q - cost. (B 8) 
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